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Abstract. Anisotropic mean square displacements, their temperature derivatives and 
second-order Doppler shift in the temperature range 0-600 K have been calculated in zinc 
by making use of the recently suggested anisotropic phonon frequency distribution function 
which takes into account the presence of planar modes. The calculated values of both 
the anisotropic mean square displacements and their temperature derivatives at various 
temperatures are in reasonable agreement with the corresponding experimental results. The 
effect of planar modes is found to be significant in the entire temperature range for all the 
three parameters studied. 

1. Introduction 

Zinc is a highly anisotropic crystal. It has a hexagonal close-packed structure with 
c/a = 1.861. Zinc therefore shows highly anisotropic behaviour in its various physical 
properties such as mean square displacement (MSD), mean square velocity, coefficient 
of thermal expansion and Gruneisen parameters. The values of these parameters along 
the c axis and perpendicular to it, i.e. in the basal plane are quite different. Further, 
recent measurements (Potzel et a1 1983, 1984, Obenhuber et a1 1987) of the Lamb- 
Mossbauer recoilless fraction (LMF) in 67Zn at temperatures of 4.2,20,8 and 47 K show 
that the ratio of LMF in the basal plane to that parallel to the c axis increases by as much 
as two orders when the temperature is raised from 4.2 to 47 K! 

In a recent paper, we suggested an anisotropic frequency distribution function (FDF) 
of phonons (Tewari and Silotia 1989) which takes into account the presence of planar 
modes to explain successfully amongst other parameters the observed temperature 
variation in LMF along the c axis and perpendicular to it in the temperature range 4.2- 
47 K in zinc. In the present work, we utilise the same model of the phonon FDF to study 
for zinc 

(i) the variation in the MSD up to 600 K,  
(ii) the MSD derivatives in the temperature range 200-600 K and 
(iii) the second-order Doppler shift in  the temperature range 0-600 K.  
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At temperatures around 200 K,  anharmonicity starts to play a role and this keeps on 
increasing with increase in temperature. We have taken the appropriate anharmonic 
effects into account in both the MSD and the MSD derivative studies. Comparison is made 
between the calculated and experimental results wherever available. 

2. Mathematical formalism 

2.1. Phonon frequency distribution function 

The suggested phonon FDF (Tewari and Silotia 1989) for zinc in a given direction i ,  has 
the following form: 

A , v ?  O S V S V " ,  

g( 'J)= B I v J  vol 6 v 6 v,, (1) 1, ZJ > v m  

where A,  and B, are constants and can be determined using 

(i) continuity of the two distribution functions at vu, and 
(ii) the fact that the total number of modes along any direction is equal to N ,  where 

Nis  the total number of atoms in the crystal. 

g( v,) along the c axis, i.e. i = z ,  andg( v,) perpendicular to the c axis, i.e. i = x ,  y ,  are 
different because the values of vo, and v,,,, are different. 

The forms of FDF along the c axis and in the basal plane given by equation (1) are 
essentially due to the highly anisotropic crystal structure (Krumhansl and Brooks 1953, 
Firey et a1 1983). Further, at low frequencies, only the v2  term contributes so that the 
specific heat variation at low temperatures is T3 dependent, i.e. the contribution of two- 
dimensional modes is absent at low frequencies. 

2.2. Mean square displacement 

Using the dynamical model given by equation ( l) ,  one gets the following expression for 
the temperature-dependent displacement-displacement autocorrelation function in a 
given direction i: 

(u$,~(o, 0)) = (U$,r (o ,  0))3D + ( U $ , I ( ~ ,  0 ) ) 2 D  (2) 

where ( U $ , ,  (0,0))3D and ( U  (0 ,  O))2D,  respectively, are the contributions of three- 
dimensional and two-dimensional modes to (U%,,(O, 0)) and the expressions for these 
are as follows: 

where M is the mass of the vibrating unit, k B  is the Boltzmann constant, 6 = vmi/voi, 
@ ~ i  = hVOi/kB, om, = hY,i/kB, E3 = Ooi/Tand E 2  = @,,/T. 
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At higher temperatures, where the anharmonic terms start to play their roles, we 
take t h e a n h a r m o n i c ~ s ~  (U+,;(O, o))a,,h inagivendirectioni(Crowetal1989, Maradudin 
and Flinn 1963) to be of the following form: 

(U$, ; (o ,  0))mh = (U;,i(O$ o))[l + T(2m;yi - 20kByOi/@&)] ( 5  1 
where mi and y;, respectively, are the coefficient of linear expansion and Gruneisen 
parameters in the direction i: moi = /C~T/(U$<~(O,  0)) is the parameter which determines 
the strength of the harmonic potential; yoi is the quartic anharmonic parameter in the 
expansion of the potential energy of a crystal. 

2.3. Mean square displacement derivative 

The total MSD derivative (U$,;(O, 0))' for a hexagonal crystal such as zinc in a given 
direction i consists of two terms (Skelton and Katz 1968, Nicklow and Young 1966): 

(i) the derivative of (U+,;(O, 0)) w.r.t. temperature when c and a are constant and 
(ii) the derivative due to change in c and a because of anisotropic expansion of the 

These are given as follows: 

crystal. 

1 + i )g (u )du] .  
exp(hv/kBT)-l 2 

Using equation ( l ) ,  one gets the following expressions for (6) and (7), respectively: 

(expx - 1)- 
€ 3  x 'expx 

(expx - 
F 3  

( 7 )  

dx + 1" X 

(expx- E:, expx-1  exp x - 1) 
dx  + L[:3 

'3 € 3  
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Figure 1. Comparison of the suggested phonon FDF for zinc with that given by other 
studies: ~ , present model; -0-, experimental from neutron scattering (Eremeever 
a1 1976); --, the Debye model. specific heat (Seidel and Keesom 1958); -.  . -. the 
Debye model, LMF (Potzel et a1 1984); - -. the extended Debye model, LMF (Potzel er a[  
1984); -- --. the modified axially symmetric model, lattice dynamics (Kaubenheimer and 
Gilat 1967). 

If we drop the planar mode contribution and suitably normalise the total number of 
modes, then equations (8) and (9) reduce to those given by Skelton and Katz (1968) 
which correspond to the isotropic phonon FDF. 

2.4. Mean square velocity 

For the evaluation of the temperature-dependent velocity-velocity autocorrelation 
function which is related to the second-order Doppler shift, we have used the same 
expression (7) as in our earlier paper (Tewari and Silotia 1989). 

3. Results and discussion 

As reported in our earlier paper (Tewari and Silotia 1989) the values of the set of 
characteristic parameters occurring in the FDF in equation (1) (@o, = 100 K,  Om, = 
170 K; Oox, = 130 K, Om, = 269 K) explain successfully the temperature variation in 
the experimental MSD (Potzel eta1 1983,1984, Obenhuber era1 1987) in the temperature 
range 4.2-47 K along the c axis and in the basal plane for zinc. In figure 1, we have 
compared our total phonon FDF with that obtained in other studies (Potzel er a1 1983, 
1984, Raubenheimer and Gilat 1967) and that obtained experimentally by neutron 
scattering (Eremeev et af 1976). As is evident from the figure. the suggested phonon FDF 
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reproduces the gross structure of the experimental phonon FDF much better than the 
others do. Using the same values of the characteristic parameters and equations (2)-(4) 
we have calculated the MSD at higher temperatures up to 600 K both along the c axis and 
in the basal plane. The results of our calculations are plotted in figure 2 along with 
the experimental data obtained from x-ray diffraction (Skelton and Katz 1968). The 
calculated values shown by curve 3 are in rather good agreement with the corresponding 
experimental results for MSD in the basal plane in the entire temperature range. Along 
the c axis, the agreement between the calculated values given by curve 1 and the 
corresponding experimental results is quite good, about 1 4 %  up to 300 K. Even at 
higher temperatures the deviation from the observed MSD is not very large, being at 
the maximum about -20% at the highest temperature of 600 K. Thus the suggested 
anisotropic phonon FDF with the same set of values of the characteristic parameters is 
able to explain reasonably well the observed anisotropic MSD in the entire temperature 
range 0-600 K for zinc. We should point out that the total MSD given by our model is in 
good agreement with that given by Eremeev et al(1976) who have reported the total MSD 
in the temperature range 0-400 K obtained by using a FDFderived from the experimental 
results of neutron scattering. In figure 2 are also shown the contributions of three- 
dimensional modes to the MSD along the c axis and perpendicular to it by curves 2 and 
4, respectively. Therefore, in both MSDS, i.e. (U$,z (O,  0)) and (U$,xJ,(O, 0)), the con- 
tribution of two-dimensional modes is very significant and keeps increasing with increase 
in temperature as is evident from figure 2. 

For temperatures greater than 300 K ,  the experimental results in the MSD along the 
c axis have higher values than the corresponding calculated results using our model, curve 
1. The difference between the two keeps on increasing with increase in temperature. 
However, since this difference is not very large along the c axis and is negligible in the 
basal plane even at 600 K,  we have used equation (5) which, strictly speaking, is valid 
for a cubic lattice. Using the first two terms on the RHS of equation ( 5 )  along with yz = 
2.77 (Barron and Munn 1967a) and the temperature-dependent (Y, (Touloukian et a1 
1975), the values of (U$,i(O, 0) )a"h  are evaluated. This results in an increase in the MSD 
at all the temperatures. We have then fixed the value of yoz by matching the calculated 
values of (U+,z(O, 0)) with the corresponding experimental result at 500 K. The value of 
yoz turns out to be about 2.6 X erg A-'. Using this value of yoz ,  (U+,z(O,  O ) ) a n h  is 
evaluated at other temperatures in the range 300-600 K and are shown in figure 2 by 
curve 5 .  These are in reasonable agreement with the corresponding experimental results 
and happen to lie within the errors of the results of Barron and Munn (1967b) which 
were obtained using thermodynamic data. 

The effect of anharmonic terms has also been evaluated for (U$,,,(O, 0)) but it is so 
small that it cannot be distinctly shown in the figure. 

As mentioned earlier, the total temperature MSD derivative (U$(O, 0))' consists of 
two distinct physical terms given by equations (8) and (9) based on our dynamical model. 
Using equation ( X ) ,  (U$(O, O));,( (=  (U+,z(O, O));,< + 2(U$,,yy(0, O));,,) is evaluated at 
various temperatures in the range 200-600 K and its variation is shown by curve 1 in 
figure 3. Also plotted as full circles in the figure are the calculated results obtained from 
the values of characteristic Debye temperature O,.(T), which reproduce (U$(O, 0))' 
observed experimentally (Skelton and Katz 1968). The difference between these and 
those given by curve 1 is about +4% at 300 K and about -20% at 600 K. The temperature 
dependence given by the full circles is essentially due to the temperature dependence of 
OM#( T ) .  Such a temperature-dependent change in the phonon FDF has not been forced 
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Figure 2. Comparison of the calculated values of 
MSD based on the suggested anisotropic dynamical 
model along the c-axis [curve 1 )  and in the basal 
plane (curve 3) at various temperatures for zinc in 
the range 0-600 K with the corresponding exper- 
imental results (0): 3, calculated results of Bar- 
ron and Munn; curves 2 and 4. contributions of 
three-dimensional modes to curves 1 and 3, 
respectively; curve 5 ,  total MSD along the c axis 
which includes the contribution of anharmonic 
terms also. 
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Figure 3. Comparison of the calculated values 
of the temperature derivative of MSD, using the 
suggested dynamical model for zinc at varying and 
constant c and a represented by curves 4 and 1, 
respectively, with the corresponding calculated 
results: 0. using O , . ( T )  from the experimental 
results of the temperature derivative of total MSD; 
0, results given by Barron and Munn; 0. total 
derivative given by Barron and Munn; curves 2 
and 3, contributions of two-dimensional and 
three-dimensional modes, respectively, to curve 
1;  curves5 and6contributionsoftwo-dimensional 
and three-dimensional modes. respectively, to 
curve 4. 

in our calculations. The calculated values of (U$(O,  O));,,, given by Barron and Munn 
(Skelton and Katz 1968) are represented by open circles alongwith their error bars. These 
lie closer to our calculated results, i.e. curve 1. Here too the temperature dependence is 
essentially because of the temperature-dependent OM( T ) ,  the characteristic Debye 
temperature, which reproduces the total MSD results of Barron and Munn (1967b). In 
the figure are also shown the two-dimensional and three-dimensional contributions to 
(U;(O, O)):. ,  by curves 2 and 3, respectively. Here, too, we find that the contribution of 
two-dimensional modes is significant in the entire temperature range. 

The calculated values of the MSD derivative given by equation (9) which takes into 
account the anisotropic expansion of the crystal, are shown in figure 3 by curve 4 along 
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T ( K )  - 
Figure4. ( a )  Comparison of the calculated values of total MSD derivatives w.r .  t .  temperature 
(curve 1) for zinc with the corresponding experimental results (0): 0, calculated results of 
Barron and Munn corrected for constant volume anharmonic effects; curves 2 and 3, the 
contributions of two-dimensional and three-dimensional modes, respectively, to curve 1. 
( b )  Details of the calculated values of temperature derivatives of the MSD for zinc along the 
c axis in the temperature range 2OC-600 K: curves 1 and 3, three-dimensional and two- 
dimensional contributions, respectively, to the total MSD derivative; curves 4 and 2 ,  two- 
dimensional and three-dimensional contributions, respectively, to the temperature deriva- 
tive of the MSD at constant volume; curves 5 and 6, two-dimensional and three-dimensional 
contributions, respectively. of the derivatives of MSD when c and a vary. 

with the calculated values using O,,(T). The difference between the two is about 
-32% at 300 K and about -36% at 600 K. Here, too, the calculated results of Barron 
and Munn (Skelton and Katz 1968) happen to lie close to our results. Also shown in the 
figure are the contributions of two-dimensional and three-dimensional modes given by 
curves 5 and 6 ,  respectively. For temperatures greater than about 280 K, in contrast with 
(U%(O, O)):,, , the two-dimensional contribution becomes greater than the corresponding 
three-dimensional contribution. In the figure, we have also shown the total (U$(O, 0))’ 
obtained from the data of Barron and Munn (Skelton and Katz 1968) denoted by open 
squares. 

In figure 4 ( a ) ,  (Uf (0 ,O)) ’  is plotted with the experimental results denoted by full 
circles (Skelton and Katz 1968). The difference between the calculated and experimental 
results is about -0.6% at 300 K and about -24% at 600 K. The results of Barron and 
Munn corrected for the constant-volume anharmonic effect shown by open circles lie 
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Figure 5.  ( a )  Calculated second-order Doppler shift relative to that at 4.2 K in the tem- 
perature range 4.2-600 K for zinc. ( b )  Details of the calculated values of second-order 
Doppler shift in the temperature range 0-600 K for zinc based on the suggested anisotropic 
dynamical model; curve 1 ,  the total second-order Doppler shift; curves 2 and 3 ,  the two 
dimensional contributions to the second-order Doppler shift in the basal plane and along the 
c axis, respectively; curves 4 and 5 ,  three-dimensional contributions to the second-order 
Doppler shift along the c axis and in the basal plane, respectively, for zinc. 

close to our results in most of the temperature range. Two-dimensional and three- 
dimensional contributions to (U$(O,  0))’ are shown by curves 2 and 3, respectively. It is 
clear that, while the three-dimensional contributions remain more or less constant in 
the entire temperature range, the two-dimensional contribution varies and increases 
with increase in temperature. 

In figure 4(b), we have plotted the details of our calculations of (U$~,(O, 0))’. Curves 
2 and 4 represent the three-dimensional and two-dimensional contributions, respect- 
ively, to (U$.z(O, 0))’. Curves 5 and 6 represent the two-dimensional and three-dimen- 
sional contributions, respectively, to (U$ ,2 (0 ,  0))’ when c and a vary. Curves 1 and 3 
represent the total three-dimensional and two-dimensional mode contributions, respect- 
ively, to the total MSD along the z direction. 

In figure 5(a) are plotted the results of our calculations of the second-order Doppler 
shift AsOD at various temperatures relative to that at 4.2 Kin the temperature range 4.2- 
600 K. AsOD keeps increasing first non-linearly up to about 200 K,  beyond which its 
variation is more or less linear up to 600 K. In figure S(b) are plotted the three-dimen- 
sional and two-dimensional contributions of the second-order Doppler shift &at various 
temperatures in the range 0-600 K.  Both for the basal plane and along the z direction, 
the contribution of two-dimensional modes is much greater than the corresponding 
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contribution of three-dimensional modes at all temperatures. Curve 1 represents the 
total second order Doppler shift, and curves 2 and 3 represent the two-dimensional 
contribution to the second-order Doppler shift in the basal plane and along the c axis, 
respectively. Curves 4 and 5 denote the three-dimensional contributions to the second- 
order Doppler shift along the c axis and in the basal plane. respectively, for zinc. 

4. Conclusion 

From our study we conclude that the phonon FDF which takes into account explicitly the 
presence of planar modes is able to explain the observed temperature variation in the 
MSD in the temperature range @-600 K with the same sets of characteristic parameters 
and yield values of the MSD derivatives and its components in reasonable agreement with 
the corresponding experimental results. In all the parameters studied, it is found that 
the contribution of two-dimensional modes is significant. 
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